

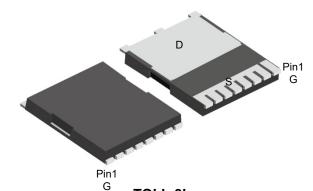
N-Channel MOSFET

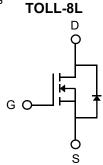
Description

The PSMTL04R05H uses split gate trench technology to provide excellent $R_{\rm DS(ON)}$ and low gate charge. This device is suitable for power management and high efficiency applications at high switching frequencies applications.

MOSFET Product Summary				
V _{DS} (V)	$R_{DS(on)}(m\Omega)$ (Typ)	$I_D(A)$		
40	0.43@ V _{GS} = 10V	726		

Feature


- ➤ Low On-Resistance
- Excellent FoM (figure of merit)
- \succ 100% ΔV_{DS} & UIS & R_g Tested
- ➤ Lead-Free Finish ; RoHS Compliant
- ➤ Halogen and Antimony Free. "Green" Device


Applications

- Load switching
- Motor driver
- ➤ High frequency switching, synchronous rectification

Mechanical Data

- Green Molding Compound
- ➤ Moisture Sensitivity: Level 1 per J-STD-020
- ➤ UL Flammability Classification Rating 94V-0

Circuit Diagram

Absolute maximum rating@25°C

Rating		Symbol	Value	Units	
Drain-Source Voltage		V _{DS}	40	V	
Gate-Source Voltage		V_{GS}	±20	V	
Proin Current Continuous() (=10)()1)	T _C =25°C	l _D	726	А	
Drain Current-Continuous(V _{GS} =10V) ¹⁾	T _C =100°C		513		
Pulsed Drain Current ²⁾		I _{DM}	2905	А	
Total Dower Dissination	T _C =25°C	P _D	441	W	
Total Power Dissipation	T _C =100°C		221		
Avalanche Current @ L=0.5mH		I _{AS}	75	А	
Avalanche Energy ³⁾		E _{AS}	2624	mJ	
Thermal Resistance , Junction-to-Case ⁵⁾		$R_{\theta JC}$	Typ:0.26 Max:0.34	°C/W	
Thermal Resistance Junction-to-Ambient ⁴⁾		$R_{\theta JA}$	Typ:22 Max:28	°C/W	
Junction and Storage Temperature Range		$T_{J,}T_{STG}$	-55~+175	°C	

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units		
Off Characteristics ⁶⁾								
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$	40	-	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 40V, \ V_{GS} = 0V $ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	-	-	1.0 100	μΑ		
Gate-Body Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA		
On Characteristics ⁶⁾								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	٧		
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_{D} = 80A$	-	0.43	0.5	mΩ		
Forward Transconductance	g _{fs}	$V_{DS} = 5 \text{ V,I}_{D} = 20 \text{A}$	-	73	-	S		
Diode Forward Voltage	V _{SD}	$V_{GS} = 0V, I_{S} = 2A$	-	0.7	1.2	V		
Dynamic Characteristics ⁷⁾	Dynamic Characteristics ⁷⁾							
Input Capacitance	C _{lss}		-	14999	-			
Output Capacitance	C _{oss}	$V_{DS} = 20V, V_{GS} = 0V,$ f = 500KHz	-	8191	-	pF		
Reverse Transfer Capacitance	C _{rss}		-	320	-			
Gate Resistance	R_g	V _{GS} =0V,V _{DS} =0V,f=1MHz	: -	2.0	-	Ω		
Switching Characteristics ⁷⁾				,				
Turn-on Delay Time	t _{d(on)}		-	0.65	-	ns		
Turn-on Rise Time	t _r	$V_{DS} = 20V, V_{GS} = 10V,$	-	86	-			
Turn-Off Delay Time	t _{d(off)}	$R_G = 3\Omega$, $I_D = 80A$	-	98	-			
Turn-Off Fall Time	t _f		-	57	-			
Total Gate Charge @ V _{GS} = 10V			-	194	-			
Total Gate Charge @ V _{GS} = 6V	Q_{g}		-	118	-			
Gate-Source Charge	Q_{gs}	$V_{DS} = 20V, I_{D} = 80A,$ $V_{GS} = 10V$	-	68	-	nC		
Gate-Drain Charge	Q_{gd}	- GS - G	-	31	-]		
Gate Plateau Voltage	V _{plateau}		-	5.0	-	V		
Drain-Source Diode Characteristics ⁷⁾								
Reverse Recovery Time	t _{rr}	1-204 4/4-4004/	-	113	-	ns		
Reverse Recovery Charge	Q _{rr}	l _F =20A, d _i /d _t =100A/μs	-	229	-	nC		
Diode Forward Current	I _S	-	-	-	726	Α		

- Notes:
- 2.
- This current is chip limited, which is calculated based on R_{BUC}.
 This current is calculated on single pulse with 10µs Single Pulse.

 Defined by design, not subject to production test, EAS condition: T_J=25°C, V_{DD}=20V, V_{GS}=10V, L=1.0mH.

 Device mounted on FR-4 substrate PC board with 2oz copper in 1inch square cooling area.

 Thermal resistance from junction to the exposed pad.

 Short duration pulse test used to minimize self-heating effect.
- 5.
- Defined by design, not subject to production.

Typical Characteristics

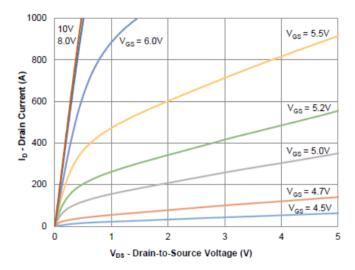


Figure 1: Output Characteristics

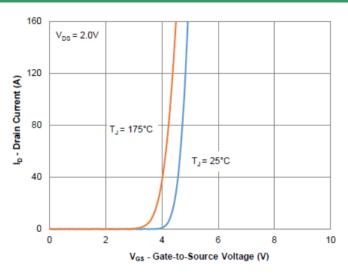


Figure 2: Transfer Characteristics

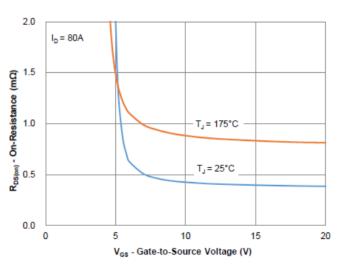


Figure 3: On-Resistance vs. Gate-Source Voltage

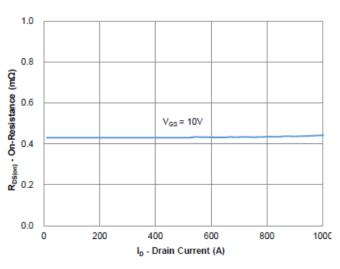


Figure 4: On-Resistance vs. Gate-Source Voltage

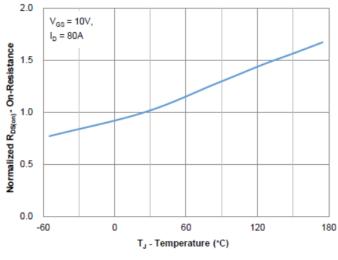


Figure 5: On-Resistance vs. Junction Temperature

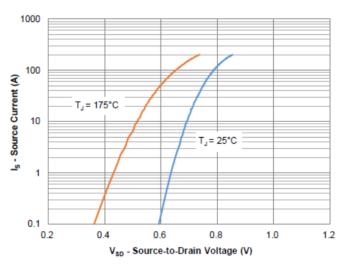


Figure 6: Source-Drain Diode Forward Voltage

N-Channel MOSFET

PSMTL04R05H



Figure 7: Gate Threshold Variation vs. Junction Temperature

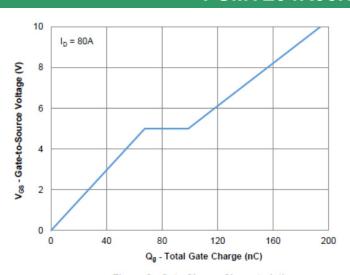


Figure 8: Gate Charge Characteristics

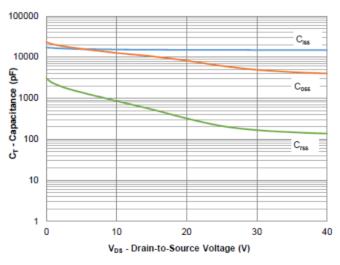


Figure 9: Capacitance Characteristics

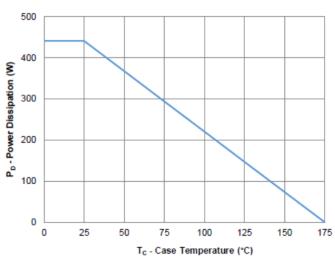


Figure 10: Power Derating

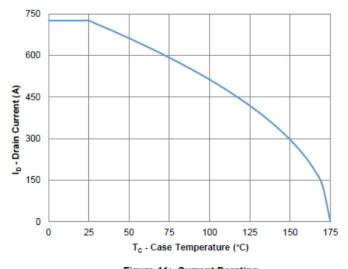


Figure 11: Current Derating

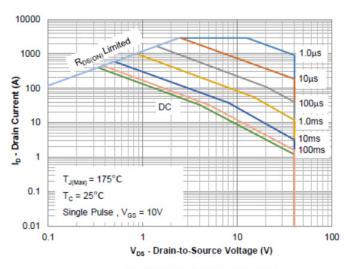


Figure 12: Safe Operating Area

N-Channel MOSFET

PSMTL04R05H

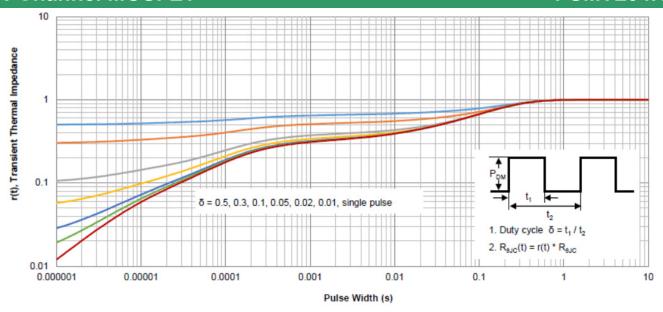
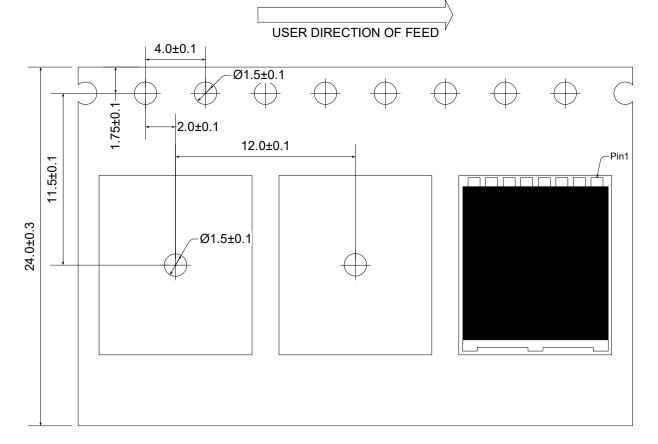
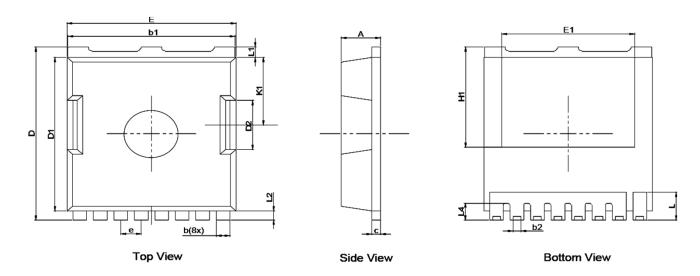
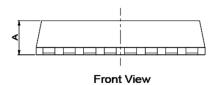
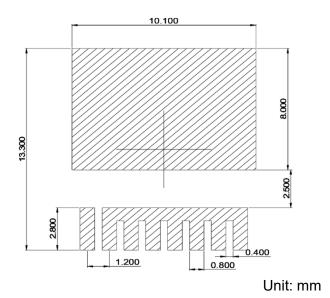



Figure 13: Normalized Maximum Transient Thermal Impedance


Ordering Information


Device	Package	Reel	Shipping
PSMTL04R05H	TOLL-8L	13"	2000 / Tape & Reel


Load With Information

Product Dimension (TOLL-8L)

Suggested PCB Layout

D:	Millim	neters	Inches		
Dim	Min	Max	Min	Max	
А	2.20	2.40	0.087	0.094	
b	0.70	0.90	0.028	0.035	
b1	9.65	9.95	0.380	0.392	
С	0.40	0.60	0.016	0.024	
D	11.48	11.95	0.452	0.470	
D1	10.28	10.70	0.405	0.421	
D2	3.30 BSC		0.130 BSC		
E	9.70	10.10	0.382	0.398	
E1	8.10 BSC		0.319 BSC		
е	1.20 BSC		0.047 BSC		
H1	6.70	7.30	0.264	0.287	
K1	4.55 BSC		0.179 BSC		
L	1.35	2.10	0.053	0.083	
L1	0.70 BSC		0.028 BSC		
L2	0.60 BSC		0.024 BSC		
L4	0.95	1.35	0.037	0.053	

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.